§ 23. Система линейных уравений с двумя переменными

Система двух линейных уравнений с двумя переменными имеет вид                              где a1, b1, c1, a2, b2, c2 — некоторые числа, а x и y — переменные.   

Решением системы уравнений                               , называется упорядоченная пара чисел (x; y), являющаяся одновременно решением

 

и первого и второго уравнения. Решить систему — это значит найти все ее решения или доказать, что их нет.

 ▪ Пример 1. Из данных пар чисел выберите ту, которая является решением системы уравнений 

а) (2; −1);        б) (0; 4);          в) (1; 1);        г) (−1; 1).

Видеорешение

 ▪ Пример 2. Проверьте, являются ли данные пары чисел решением системы уравнений (+объяснение материала)

а) (40; 20);                 б) (30; 30).

Видеорешение

Число решений системы линейных уравнений с двумя переменными

1. Если прямые ax1 + by1 = cи ax2 + by2 = c2 пересекаются, значит, система уравнений имеет единственное решение.

 

2. Если прямые ax1 + by1 = cи ax2 + by2 = c2 параллельны, значит, система уравнений не имеет решений.

3. Если прямые ax1 + by1 = cи ax2 + by2 = c2 совпадают, значит, система уравнений имеет бесконечно много решений.

 ▪ Пример 3. Постройте графики системы уравнений 

Видеорешение