§ 2. Предмет геометрии

Основные фигуры

В планиметрии изучаются свойства плоских геометрических фигур, то есть тех, которые всеми своими точками могут быть расположены в одной плоскости. Это треугольник, квадрат, окружность и другие фигуры.

Основные геометрические фигуры — точкапрямая и плоскость. Это абстрактные математические понятия, которые принимаются  без определения. Точка обозначается большой буквой, прямая — двумя большими или одной малой буквой латинского алфавита. Плоскость обозначается тремя большими буквами латинского или одной малой буквой греческого алфавита. 

На рисунке изображены точки АВС и М, прямые ВС и b, плоскость α (альфа). Точка А и прямая ВС принадлежат плоскости α, точка М принадлежит прямой b.

Планиметрия и стереометрия

В стереометрии рассматриваются свойства пространственных геометрических фигур, которые не могут целиком располагаться в одной плоскости. Таких, например, как куб, прямоугольный параллелепипед, пирамида, шар. 

Геометрические фигуры называются равными, если их можно совместить наложением. Так как фигуры А и В, изображенные на рисунке, совместились всеми своими точками, то это равны  фигуры. Если сказано, что фигуры равны, то их можно полностью совместить друг с другом.

Иногда для совмещения равных фигур, расположенных на плоскости, одну из них приходится перевернуть. Например, как фигуру С  на рисунке для совмещения с равными ей фигурами А и В

Аксиомами называются утверждения об основных свойствах простейших фигур, не вызывающие сомнений.

Аксиома — это  утверждение, которое принимается без доказательства. Например:

Аксиома. Через любые две точки плоскости можно провести прямую, и притом только одну.

Определения, аксиомы, теоремы

Свойства фигур формулируются в виде аксиом и теорем.

Все геометрические фигуры, кроме точки, прямой и плоскости, имеют определения. В определении указываются отличительные характеристики данной фигуры или взаимного расположения фигур. Определение обычно содержит либо слово называется, либо слово это. Например:
Определение. Отрезком называется часть прямой, ограничен ная двумя точками.
Определение. Равносторонний треугольник — это  треугольник, у которого все стороны равны.

Теоремами называются верные утверждения, справедливость которых устанавливается путем логических рассуждений, которые называются доказательством. Доказательство каждой теоремы опирается на аксиомы и ранее доказанные теоремы.

Теорема — это утверждение, которое требует доказательства. Например:

Теорема. На плоскости две прямые, перпендикулярные третьей прямой, параллельны между собой.