§ 17. Свойства и график функции y = k/x, где k ≠ 0

Формула y = k/x, где k ≠ 0, задает функцию, которая называется обратной пропорциональностью.

Свойства и график функции

5. График функции.График обратной пропорциональности называется гиперболой. Гипербола имеет две ветви. Ветви гиперболы симметричны относительно начала координат.

1. Область определения функции. Так как дробь k/x имеет смысл при всех значениях x, кроме нуля, то D = (−     ; 0) U (0; +    ).

Графически это означает, что график функции y = k/x не пересекает ось ординат.

2. Множество значений функции. Так как k ≠ 0, то k/x ≠ 0, значит, y ≠ 0, т. е. E = (−     ; 0) U ( 0; +     ).Графически это означает, что график функции не пересекает ось абсцисс.

3. Нули функции. Так как y ≠ 0, то функция y = k/x не имеет нулей.

4. Промежутки знакопостоянства функции.

Если k > 0, то y > 0 при x ∈ (0; +    ), y < 0 при x ∈ (−     ; 0).

Если k < 0, то y > 0 при x ∈ (−     ; 0), y < 0 при x ∈ (0; +     ).

Если k < 0, то график обратной пропорциональности расположен во второй и четвертой координатных четвертях.

Если k > 0, то график обратной пропорциональности расположен в первой и третьей координатных четвертях.

6. Промежутки монотонности функции.

Если k > 0, то с увеличением значений аргумента значения функции уменьшаются на каждом из промежутков (−     ; 0) и (0; +    ), т. е. функция убывает на каждом из промежутков (−     ; 0) и (0; +     ).

Если k < 0, то с увеличением значения аргумента значения функции увеличиваются на каждом из промежутков (−     ; 0) и (0; +     ), т. е. функция y = k/x  возрастает на каждом из промежутков (−    ; 0) и (0; +     ).

Пример. Известно, что график функции y=k/ проходит через точку                     . Постройте график этой функции.

Видеорешение

Пример. Известно, что график функции y=k/ проходит через точку                     . Постройте график этой функции.

Видеорешение